
 CSE373 13au Final Review

Data Structures

Stacks: a list of elements, the main operations are to add and remove items to the front of
the list, burying old items in the stack.
 Advantage: Simple FIFO
 Disadvantage: O(n) searches, narrow operation

Queues: a list of elements, the main operations are to add items to the front of the list and
remove items from the end of the list
 Advantage: Simple LIFO
 Disadvantage: O(n) searches, narrow operation

Binary Search Tree: A tree in which each node branches out to more nodes, one with a
key less than it and one with a key more (if the nodes exist).
 Advantage: Fast lookup, fast insert
 Disadvantages: Need comparable, can become unbalanced
 So use AVL, rotate unbalanced parts

Heaps: A tree that just contains nodes and guaranteed log(n) level. In a Min-Heap, the
parent of a node has a key smaller than the children, so the root now has the minimum
key. In a Max Heap the opposite is true and the root has the maximum.
 Advantage: Really good in finding the min and the maximum, reasonable log(n)
guarantees. Can be used as a priority queue
 Disadvantages: Hard to iterate over

Union Find (Disjoint Sets, up tree): Each node relays information for which group it
belongs to (by tracing parentage). Can be optimized to provide better guarantees.
 Advantage: Great for organizing group memberships and measuring group size
 Disadvantages:

Minimum spanning tree: Union of the elements in a graph using the least
cost links between them

Hash Tables: Stores values (or key/value pairs) in an array with built-in hashed
(pseudorandom) assignments.
 Advantage: Really fast (constant) lookups and deletions
 Disadvantages: Cannot iterate over

Adjacency Lists: Array with a cell for each vertex, each cell contains a list of vertices
that it is connected to.
 Advantage: Great for getting a list of adjacent vertices, for sparse graphs
 Disadvantages: Bad for dense graphs, looking up specific edges.

Adjacency Matrices: A two-dimensional array (number of vertices by number of
vertices) each entry indicates whether there is an edge between two points and can also
indicate the weight of the edge.
 Advantage: Great for dense graphs, looking up specific edges
 Disadvantages: Large space requirements, wasted in sparse graphs

 CSE373 13au Final Review

Website with Time Complexities:

http://bigocheatsheet.com/

Abstraction

Protect the code!
Copy In, Copy Out
Mutability
Deep Copying

Map / Reduce

Fork / Join
 Fork splits up processes to different processors or threads
 Join combines the split up data
Map / Reduce
 Map does a process on many parts of data independently, such as multiplying
each value in an array by two
 Reduce
Amdahl’s Law
 One cannot speed up a program more than a degree based on how much runtime
cannot be parallelized

Sorting

What sorts do you have?
 Insertion Sort: Scan through an array from the beginning to end, if you find an
element smaller than your end, swap it down the list until it has been INSERTED into the
right place.
 Selection Sort: SELECT the smallest element in the array by scanning all of the
elements and swap it to the front, then scan through the rest and SELECT the next
smallest, putting it into the next bin, etc.
 Quicksort: Choose a pivot point and put all elements smaller than it on one side of
the array and all elements larger on the other side, recursively divide the left and right
sides. It is QUICK because it can be done in place and works out well when you pick the
median as a pivot.
 Heapsort: Build a HEAP of the elements and then pop the min elements out
repeatedly, filling in a sorted array. Alternatively, you can fill in from the back with the
max elements (this allows you to do it in place)
 Mergesort: Divide the array into two partitions of equal size and mergesort these
partitions. Return single element arrays. Once you get back your two partitions, MERGE
them together but combining each of the elements.
 Bucket Sort: Have K bins for each possible key. Insert elements at their keys. O(n
+ k) but k may be awful if you choose the wrong set

 CSE373 13au Final Review

 Radix Sort: Divide the elements into bins based on the first digit, then in this
order divide elements into bins based on the next digit and so forth… The complexity of
this is O(nk) but if all of the elements are unique, then k >= log(n) so it really is not better
than Quick, Heap, and Merge sort.

Quicksort Code

import java.io.*;
import java.util.*;

public class QuickSort {

 public static void Quicksort(int[] A) {
 Quicksort(A, 0, A.length – 1);
 }

 public static void Quicksort(int[] A, int left, int right) {
 int pivot_index = partition(A, left, right);
 Quicksort(A, left, pivot_index);
 Quicksort(A, pivot_index+1, right);
 }

 public static int partition(int[] A, int left, int right) {
 int pivot = A[left];
 while (left < right) {
 while (A[left] <= pivot) left++;
 while (A[right] > pivot) right--;
 int temp = A[x];
 A[x] = A[y];
 A[y] = temp;
 }
 return left;
 }
}

